跳转至

Python | Numpy np.laggauss()方法

原文:https://www . geesforgeks . org/python-numpy-NP-lag gaus-method/

**np.laggauss()**计算高斯-拉盖尔求积的样本点和权重。这些样本点和权重将在区间[0, inf]上正确地将次数2*deg - 1 或更少的多项式与权重函数f(x) = exp(-x)积分

语法: np.laggauss(deg) 参数: deg:【int】样本点数量和权重。肯定是> = 1。

返回: 1。包含样本点的一维数组。 2。包含权重的一维数组。

代码#1 :

# Python program explaining
# numpy.laggauss() method 

# importing numpy as np  
# and numpy.polynomial.laguerre module as geek 
import numpy as np 
import numpy.polynomial.laguerre as geek

# Input degree = 2

degree = 2 

# using np.laggauss() method 
res = geek.laggauss(degree) 

# Resulting array of sample point and weight
print (res) 

Output:

(array([ 0.58578644,  3.41421356]), array([ 0.85355339,  0.14644661]))

代码#2 :

# Python program explaining
# numpy.laggauss() method 

# importing numpy as np  
# and numpy.polynomial.laguerre module as geek 
import numpy as np 
import numpy.polynomial.laguerre as geek

# Input degree
degree = 3

# using np.laggauss() method 
res = geek.laggauss(degree) 

# Resulting array of sample point and weight
print (res) 

Output:

(array([ 0.41577456,  2.29428036,  6.28994508]), array([ 0.71109301,  0.27851773,  0.01038926]))



回到顶部