Python 中的 numpy.zeros _ like()
这个 numpy 方法返回一个给定形状和类型的数组作为给定数组,并带有零。
Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True)
参数:
array : array_like input
subok : [optional, boolean]If true, then newly created array will be sub-class of array;
otherwise, a base-class array
order : C_contiguous or F_contiguous
C-contiguous order in memory(last index varies the fastest)
C order means that operating row-rise on the array will be slightly quicker
FORTRAN-contiguous order in memory (first index varies the fastest).
F order means that column-wise operations will be faster.
dtype : [optional, float(byDeafult)] Data type of returned array.
返回:
ndarray of zeros having given shape, order and datatype.
代码 1 :
计算机编程语言
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
b = geek.zeros_like(array, float)
print("\nMatrix b : \n", b)
array = geek.arange(8)
c = geek.zeros_like(array)
print("\nMatrix c : \n", c)
输出:
Original array :
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
Matrix b :
[[ 0\. 0.]
[ 0\. 0.]
[ 0\. 0.]
[ 0\. 0.]
[ 0\. 0.]]
Matrix c :
[0 0 0 0 0 0 0 0]
代码 2 :
计算机编程语言
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
array = geek.arange(4).reshape(2, 2)
c = geek.zeros_like(array, dtype = 'float')
print("\nMatrix : \n", c)
array = geek.arange(8)
c = geek.zeros_like(array, dtype = 'float', order ='C')
print("\nMatrix : \n", c)
输出:
Original array :
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
Matrix :
[[ 0\. 0.]
[ 0\. 0.]]
Matrix :
[ 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0.]
参考文献: https://docs . scipy . org/doc/numpy-dev/reference/generated/numpy . zeros _ like . html # numpy . zeros _ like 注意: 同样,这些代码不会在 online-ID 上运行。请在您的系统上运行它们来探索工作方式 本文由 Mohit Gupta_OMG 供稿😀。如果你喜欢 GeeksforGeeks 并想投稿,你也可以使用write.geeksforgeeks.org写一篇文章或者把你的文章邮寄到 review-team@geeksforgeeks.org。看到你的文章出现在极客博客主页上,帮助其他极客。 如果发现有不正确的地方,或者想分享更多关于上述话题的信息,请写评论。