Python 中的 numpy.quantile()
numpy.quantile(arr, q, axis = None)
: 沿指定轴计算给定数据(数组元素)的第 q 个分位数。
当处理正态分布时,分位数在统计学中起着非常重要的作用。
在上图中,Q2
是正态分布数据的median
。Q3 - Q2
表示给定数据集的分位数区间。
参数: arr:【array _ like】输入数组。 q : 分位数值。 轴:【int 或 int 的元组】轴,我们要沿着该轴计算分位数值。否则,它将考虑将 arr 展平(在所有轴上工作)。axis = 0 表示沿列工作,axis = 1 表示沿行工作。 out:【n 数组,可选】我们要放置结果的不同数组。数组必须具有与预期输出相同的维度。
结果:数组(如果轴为无,则为标量值)或沿指定轴具有分位数值的数组的 qth 分位数。
代码#1:
# Python Program illustrating
# numpy.quantile() method
import numpy as np
# 1D array
arr = [20, 2, 7, 1, 34]
print("arr : ", arr)
print("Q2 quantile of arr : ", np.quantile(arr, .50))
print("Q1 quantile of arr : ", np.quantile(arr, .25))
print("Q3 quantile of arr : ", np.quantile(arr, .75))
print("100th quantile of arr : ", np.quantile(arr, .1))
输出:
arr : [20, 2, 7, 1, 34]
Q2 quantile of arr : 7.0)
Q1 quantile of arr : 2.0)
Q3 quantile of arr : 20.0)
100th quantile of arr : 1.4)
代码#2:
# Python Program illustrating
# numpy.quantile() method
import numpy as np
# 2D array
arr = [[14, 17, 12, 33, 44],
[15, 6, 27, 8, 19],
[23, 2, 54, 1, 4, ]]
print("\narr : \n", arr)
# quantile of the flattened array
print("\n50th quantile of arr, axis = None : ", np.quantile(arr, .50))
print("0th quantile of arr, axis = None : ", np.quantile(arr, 0))
# quantile along the axis = 0
print("\n50th quantile of arr, axis = 0 : ", np.quantile(arr, .25, axis = 0))
print("0th quantile of arr, axis = 0 : ", np.quantile(arr, 0, axis = 0))
# quantile along the axis = 1
print("\n50th quantile of arr, axis = 1 : ", np.quantile(arr, .50, axis = 1))
print("0th quantile of arr, axis = 1 : ", np.quantile(arr, 0, axis = 1))
print("\n0th quantile of arr, axis = 1 : \n",
np.quantile(arr, .50, axis = 1, keepdims = True))
print("\n0th quantile of arr, axis = 1 : \n",
np.quantile(arr, 0, axis = 1, keepdims = True))
输出:
arr :
[[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]
50th quantile of arr, axis = None : 15.0
0th quantile of arr, axis = None : 1)
50th quantile of arr, axis = 0 : [14.5 4\. 19.5 4.5 11.5]
0th quantile of arr, axis = 0 : [14 2 12 1 4]
50th quantile of arr, axis = 1 : [17\. 15\. 4.]
0th quantile of arr, axis = 1 : [12 6 1]
0th quantile of arr, axis = 1 :
[[17.]
[15.]
[ 4.]]
0th quantile of arr, axis = 1 :
[[12]
[ 6]
[ 1]]