python 中的 numpy.nanargmax()
哎哎哎:# t0]https://www . geeksforgeeks . org/num py-nanahrgmax-python/
numpy.nanargmax() 函数返回数组中最大元素在特定轴上的索引,忽略 NaNs。 如果切片只包含 NaNs 和 Infs,则结果不可信。
语法:
numpy.nanargmax(array, axis = None)
参数:
array : Input array to work on
axis : [int, optional]Along a specified axis like 0 or 1
返回:
Array of indices into the array with same shape as array.shape
with the dimension along axis removed.
代码 1 :
计算机编程语言
# Python Program illustrating
# working of nanargmax()
import numpy as geek
# Working on 1D array
array = [geek.nan, 4, 2, 3, 1]
print("INPUT ARRAY 1 : \n", array)
array2 = geek.array([[geek.nan, 4], [1, 3]])
# returning Indices of the max element
# as per the indices ingnoring NaN
print("\nIndices of max in array1 : ", geek.nanargmax(array))
# Working on 2D array
print("\nINPUT ARRAY 2 : \n", array2)
print("\nIndices of max in array2 : ", geek.nanargmax(array2))
print("\nIndices at axis 1 of array2 : ", geek.nanargmax(array2, axis = 1))
输出:
INPUT ARRAY 1 :
[nan, 4, 2, 3, 1]
Indices of max in array1 : 1
INPUT ARRAY 2 :
[[ nan 4.]
[ 1\. 3.]]
Indices of max in array2 : 1
Indices at axis 1 of array2 : [1 1]
代码 2:比较 argmax 和 nanargmax 的工作情况
计算机编程语言
# Python Program illustrating
# working of nanargmax()
import numpy as geek
# Working on 2D array
array = ( [[ 8, 13, 5, 0],
[ 16, geek.nan, 5, 3],
[geek.nan, 7, 15, 15],
[3, 11, 4, 12]])
print("INPUT ARRAY : \n", array)
# returning Indices of the max element
# as per the indices
'''
[[ 8 13 5 0]
[ 16 2 5 3]
[10 7 15 15]
[ 3 11 4 12]]
^ ^ ^ ^
'''
print("\nIndices of max using argmax : ", geek.argmax(array, axis = 0))
print("\nIndices of max using nanargmax : : ", geek.nanargmax(array, axis = 0))
输出:
INPUT ARRAY :
[[8, 13, 5, 0], [16, nan, 5, 3], [nan, 7, 15, 15], [3, 11, 4, 12]]
Indices of max using argmax : [2 1 2 2]
Indices of max using nanargmax : : [1 0 2 2]
注意: 这些代码不会在在线-ID 上运行。请在您的系统上运行它们来探索工作。
本文由莫希特·古普塔 _OMG 供稿😀。如果你喜欢 GeeksforGeeks 并想投稿,你也可以使用write.geeksforgeeks.org写一篇文章或者把你的文章邮寄到 review-team@geeksforgeeks.org。看到你的文章出现在极客博客主页上,帮助其他极客。 如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。