Python 中的 numpy.equal()
numpy.equal(arr1,arr2,out = None,其中= True,casting = 'same_kind ',order = 'K ',dtype = None,ufunc 'not_equal') : 此逻辑函数检查 arr1 == arr2 elemen-twise。
参数:
arr 1:【array _ like】输入数组 T3】arr 2:【array _ like】输入数组
输出:【n 数组,可选】输出数组,与输入数组具有相同的尺寸,与结果一起放置。
**kwargs : 允许您将关键字可变长度的参数传递给函数。当我们想要处理函数中的命名参数时,会用到它。
其中:【array _ like,可选】True 值表示计算该位置的通用函数(ufunc),False 值表示将值单独留在输出中。
返回:
Returns arr1 == arr2 element-wise
代码 1 :
# Python Program illustrating
# numpy.equal() method
import numpy as geek
a = geek.equal([1., 2.], [1., 3.])
print("Check to be Equal : \n", a, "\n")
b = geek.equal([1, 2], [[1, 3],[1, 4]])
print("Check to be Equal : \n", b, "\n")
输出:
Check to be Equal :
[ True False]
Check to be Equal :
[[ True False]
[ True False]]
代码 2:使用比较数据类型。相等()功能
# Python Program illustrating
# numpy.equal() method
import numpy as geek
# Here we will compare Complex values with int
a = geek.array([0 + 1j, 2])
b = geek.array([1,2])
d = geek.equal(a, b)
print("Comparing complex with int using .equal() : ", d)
输出:
Comparing complex with int using .equal() : [False True]
代码 3 :
# Python Program illustrating
# numpy.not_equal() method
import numpy as geek
# Here we will compare Float with int values
a = geek.array([1.1, 1])
b = geek.array([1, 2])
d = geek.not_equal(a, b)
print("\nComparing float with int using .not_equal() : ", d)
输出:
Comparing float with int using .not_equal() : [ True True]
参考文献: https://docs . scipy . org/doc/numpy-1 . 13 . 0/reference/generated/numpy . equal . html 。