如何用 Python 中的 NumPy 将一个多项式减去另一个多项式?
原文:https://www . geeksforgeeks . org/如何使用 python 中的 numpy 将一个多项式减去另一个多项式/
在这篇文章中,让我们讨论如何将一个多项式减去另一个多项式。给出两个多项式作为输入,结果是两个多项式的相减。
- 多项式 p(x) = C3 x2 + C2 x + C1 在 NumPy 中表示为: ( C1、C2、C3 ) {系数(常数)}。
- 让我们取两个多项式 p(x)和 q(x),然后减去它们,得到 r(x)= p(x)–q(x),这是两个输入多项式相减的结果。
If p(x) = A3 x2 + A2 x + A1
and
q(x) = B3 x2 + B2 x + B1
then result is
r(x) = p(x) - q(x) i.e;
r(x) = (A3 - B3) x2 + (A2 - B2) x + (A1 - B1)
and output is
( (A1 - B1), (A2 - B2), (A3 - B3) ).
在 NumPy 中,可以使用 polysub() 方法求解。该函数有助于找到两个多项式的差,然后将结果作为多项式返回
下面是一些示例的实现:
示例 1: 使用多边形()
蟒蛇 3
# importing package
import numpy
# define the polynomials
# p(x) = 5(x**2) + (-2)x +5
px = (5,-2,5)
# q(x) = 2(x**2) + (-5)x +2
qx = (2,-5,2)
# subtract the polynomials
rx = numpy.polynomial.polynomial.polysub(px,qx)
# print the resultant polynomial
print(rx)
输出:
[ 3\. 3\. 3.]
示例 2: 带 _ 小数的子
蟒蛇 3
# importing package
import numpy
# define the polynomials
# p(x) = 2.2
px = (0,0,2.2)
# q(x) = 9.8(x**2) + 4
qx = (9.8,0,4)
# subtract the polynomials
rx = numpy.polynomial.polynomial.polysub(px,qx)
# print the resultant polynomial
print(rx)
输出:
[-9.8 0\. -1.8]
示例 3: #eval_then_sub
蟒蛇 3
# importing package
import numpy
# define the polynomials
# p(x) = (5/3)x
px = (0,5/3,0)
# q(x) = (-7/4)(x**2) + (9/5)
qx = (-7/4,0,9/5)
# subtract the polynomials
rx = numpy.polynomial.polynomial.polysub(px,qx)
# print the resultant polynomial
print(rx)
输出:
[ 1.75 1.66666667 -1.8 ]